Fastest Mixing Markov Chain on a Graph

نویسندگان

  • Stephen P. Boyd
  • Persi Diaconis
  • Lin Xiao
چکیده

We consider a symmetric random walk on a connected graph, where each edge is labeled with the probability of transition between the two adjacent vertices. The associated Markov chain has a uniform equilibrium distribution; the rate of convergence to this distribution, i.e., the mixing rate of the Markov chain, is determined by the second largest (in magnitude) eigenvalue of the transition matrix. In this paper we address the problem of assigning probabilities to the edges of the graph in such a way as to minimize the second largest magnitude eigenvalue, i.e., the problem of finding the fastest mixing Markov chain on the graph. We show that this problem can be formulated as a convex optimization problem, which can in turn be expressed as a semidefinite program (SDP). This allows us to easily compute the (globally) fastest mixing Markov chain for any graph with a modest number of edges (say, 1000) using standard numerical methods for SDPs. Larger problems can be solved by exploiting various types of symmetry and structure in the problem, and far larger problems (say 100000 edges) can be solved using a subgradient method we describe. We compare the fastest mixing Markov chain to those obtained using two commonly used heuristics: the maximum-degree method, and the Metropolis-Hastings algorithm. For many of the examples considered, the fastest mixing Markov chain is substantially faster than those obtained using these heuristic methods. We derive the Lagrange dual of the fastest mixing Markov chain problem, which gives a sophisticated method for obtaining (arbitrarily good) bounds on the optimal mixing rate, as well the optimality conditions. Finally, we describe various extensions of the method, including a solution of the problem of finding the fastest mixing reversible Markov chain, on a fixed graph, with a given equilibrium distribution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounding Fastest Mixing

In a series of recent works, Boyd, Diaconis, and their co-authors have introduced a semidefinite programming approach for computing the fastest mixing Markov chain on a graph of allowed transitions, given a target stationary distribution. In this paper, we show that standard mixing-time analysis techniques—variational characterizations, conductance, canonical paths—can be used to give simple, n...

متن کامل

Convex Optimization of Graph Laplacian Eigenvalues

We consider the problem of choosing the edge weights of an undirected graph so as to maximize or minimize some function of the eigenvalues of the associated Laplacian matrix, subject to some constraints on the weights, such as nonnegativity, or a given total value. In many interesting cases this problem is convex, i.e., it involves minimizing a convex function (or maximizing a concave function)...

متن کامل

Gossip and mixing times of random walks on random graphs

Motivated by applications to sensor and ad hoc networks, we study distributed algorithms for passing information and for computing averages in an arbitrarily connected network of nodes. Our work draws upon and contributes to a growing body of literature in three areas: (i) Distributed averaging algorithms, as formulated in Kempe, Dobra and Gehrke (2003), (ii) geometric random graph models for l...

متن کامل

Fastest Mixing Markov Chain on a Path

Simulation using Markov chain Monte Carlo is a mainstay of scientific computing; see, e.g., [4, 5] for pointers to the literature. Thus the analysis and design of fast mixing Markov chains, with given stationary distribution, has become a research area. In [2], we show how to numerically find the fastest mixing Markov chain (i.e., the one with smallest secondlargest eigenvalue modulus) on a giv...

متن کامل

Fast and Slim Lifted Markov Chains

Metropolis-Hasting method allows for designing a reversible Markov chain P on a given graph G for a target stationary distribution π. Such a Markov chain may suffer from its slow mixing time due to reversibility. Diaconis, Holmes and Neal (1997) for the ring-like chain P , and later Chen, Lovasz and Pak (2002) for an arbitrary chain P provided an explicit construction of a non-reversible Markov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM Review

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2004